Как записывается айпи адрес

IP-адрес (Internet Protocol Address, айпи адрес) – это уникальный числовой идентификатор конкретного устройства в составе компьютерной сети, построенной на основе протокола TCP/IP. Для работы в Интернете требуется его глобальная уникальность. Для частной сети достаточно, чтобы были исключены совпадения в локальном пространстве.

Формат IP-адреса и как он выглядит

IP-адрес в сети Интернет может быть представлен в одном из двух цифровых форматов, который зависит от типа используемого протокола.

  • IPv4 (Internet Protocol v. 4) — адрес, записанный в 32-битном формате. Имеет вид четырех 8-битных чисел (минимум 0, максимум 255), которые разделены друг от друга точками. Пример: 172.16.255.2.
  • IPv6 (Internet Protocol v. 6) — адрес, записанный в 128-битном формате. Имеет вид 8 групп, в каждой из которых находится по 4 шестнадцатеричные цифры, отделенные друг от друга двоеточиями. При этом допустимо опускать ведущие нулевые группы, которые идут подряд, и заменять их двойным двоеточием, однако в одном адресе возможно только одно такое упрощение. Пример: 2001:0da8:11a4:08d6:1f84:8a3e:07a1:655d.

Структура IP-адреса

В общем случае IP-адрес состоит из двух частей (ID-номеров): сети и конкретного узла в ее пределах. Чтобы отличать их в полной записи, используют классы или маски.

Для доступа к Интернет необходимо, чтобы IP принадлежал к другому блоку или в пределах локальной сети существовал сервер, на котором происходит подмена внутреннего адреса на внешний. С этой целью используются прокси или NAT. Для доступа к Интернету адрес выдается провайдером или региональным интернет-регистратором.

По умолчанию маршрутизатор может входить в несколько разных сетей. Каждый его порт имеет персональный IP-адрес. Соответственно, такой же принцип работы применим к конкретным компьютерам, которые могут поддерживать различное число сетевых связей.

Типы IP-адресов

В зависимости от способа использования

Внешний. Он же «белый», публичный или глобальный. Используется во время доступа в Интернет. Такой IP-адрес является уникальным и именно под ним устройство видят в сети. Так как количество таких идентификаторов ограничено, задействуют технологию NAT. Она позволяет транслировать сетевые IP-адреса из частных в публичные. Для этого применяются маршрутизаторы определенного типа.

По внешним IP-адресам многие интернет-сервисы отслеживают новых и вернувшихся пользователей. Это позволяет собирать статистику и делать аналитику, важную для продвижения сайта.

Внутренний. Он же «серый», локальный или частный IP-адрес источника. Не используется во время доступа в Интернет. Работает только в пределах локальной сети (домашней или предоставленной провайдером), и доступ к нему можно получить только другим ее участникам. Для этой цели по умолчанию зарезервированы следующие диапазоны частных IP-адресов:

  • 10.0.0.0 – 10.255.255.255;
  • 172.16.0.0 – 172.31.255.255;
  • 192.168.0.0 – 192.168.255.255.

Необходимо понимать, что не всегда внешний IP-адрес является постоянным. Наоборот, IP часто формируется заново от одного подключения к другому.

В зависимости от вариантов определения

Статические. Это IP-адреса, являющиеся неизмененными (постоянными). Они назначаются устройству автоматически в момент его присоединения к компьютерной сети или прописываются пользователем вручную. Статические адреса доступны для использования неограниченное время. Они могут выполнять функцию идентификатора только для одного сетевого узла. Также иногда используется понятие псевдостатических адресов, которые работают в пределах одной частной сети.

Динамические. Это те IP-адреса, которые выдаются устройству на время. Они автоматически присваиваются в момент подключения к сети и имеют ограниченный срок действия (от начала сессии до ее завершения). Динамические IP-адреса – своеобразный способ маскировки. Отследить человека, выходящего в Интернет с помощью такого адреса, сложно технически, в этом случае не обойтись без профессиональных инструментов.

Что дает статический IP-адрес

Статический IP-адрес полезен благодаря следующим возможностям:

  • привязке пользователя к конкретной сети;
  • инструментам для организации защитного канала передачи данных;
  • оптимизации работы с сетевыми серверами;
  • решению задач, связанных с информационными технологиями;
  • упрощенной работе в пиринговых сетях (например, с торрентами);
  • использованию онлайн-сервисов, требующих обязательного наличия статического IP-адреса.
Читайте также:  Как подключить двухтарифный электросчетчик

Как узнать IP-адрес

Зачем знать свой реальный IP-адрес? Он понадобится вам для того, чтобы начать работать с некоторыми сервисами, требующими его указания вручную. Каким образом получить информацию об IP? Есть как минимум два способа:

  • специализированные онлайн-сервисы. Воспользоваться ими очень просто: достаточно зайти на них, и уже через несколько секунд в динамическом окне появится нужная информация;
  • провайдер. Вы можете узнать свой IP-адрес, обратившись в техподдержку поставщика интернет-услуг (как вариант, в «Личном кабинете» пользователя).

Помните, что вместе с IP-адресом другим устройствам (и, соответственно, лицам) будет доступна и иная информация, а именно: названия и данные провайдера интернет-услуг, название и версия установленной операционной системы и браузера, географическая привязка. Сторонние сервисы видят, используете ли вы прокси-сервер или средства защиты данных.

IP-адрес (aй-пи адрес, сокращение от англ. Internet Protocol Address) — уникальный идентификатор (адрес) устройства (обычно компьютера), подключённого к локальной сети или интернету.

IP-адрес представляет собой 32-битовое (по версии IPv4) или 128-битовое (по версии IPv6) двоичное число. Удобной формой записи IP-адреса (IPv4) является запись в виде четырёх десятичных чисел (от 0 до 255), разделённых точками, например, 192.168.0.1. (или 128.10.2.30 — традиционная десятичная форма представления адреса, а 10000000 00001010 00000010 00011110 — двоичная форма представления этого же адреса).

IP-адреса представляют собой основной тип адресов, на основании которых сетевой уровень протокола IP передаёт пакеты между сетями. IP-адрес назначается администратором во время конфигурирования компьютеров и маршрутизаторов.

IP-адрес состоит из двух частей: номера сети и номера узла. В случае изолированной сети её адрес может быть выбран администратором из специально зарезервированных для таких сетей блоков адресов (192.168.0.0/16, 172.16.0.0/12 или 10.0.0.0/8). Если же сеть должна работать как составная часть Интернета, то адрес сети выдаётся провайдером либо pегиональным интернет-регистратором (Regional Internet Registry, RIR). Всего существует пять RIR: ARIN, обслуживающий Северную Америку; APNIC, обслуживающий страны Юго-Восточной Азии; AfriNIC, обслуживающий страны Африки; LACNIC, обслуживающий страны Южной Америки и бассейна Карибского моря; и RIPE NCC, обслуживающий Европу, Центральную Азию, Ближний Восток. Региональные регистраторы получают номера автономных систем и большие блоки адресов у ICANN, а затем выдают номера автономных систем и блоки адресов меньшего размера локальным интернет-регистраторам (Local Internet Registries, LIR), обычно являющимся крупными провайдерами.

Номер узла в протоколе IP назначается независимо от локального адреса узла. Маршрутизатор по определению входит сразу в несколько сетей. Поэтому каждый порт маршрутизатора имеет собственный IP-адрес. Конечный узел также может входить в несколько IP-сетей. В этом случае компьютер должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом, IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

Классы IP-адресов

Какая часть адреса относится к номеру сети, а какая к номеру узла, определяется значениями первых бит адреса. Значения этих бит являются также признаками того, к какому классу относится тот или иной IP-адрес.

На рисунке показана структура IP-адреса разных классов.

Бесклассовая адресация

Со второй половины 90-х годов XX века классовая маршрутизация повсеместно вытеснена бесклассовой маршрутизацией, при которой количество адресов в сети определяется только и исключительно маской подсети.

Особые IP-адреса

В протоколе IP существует несколько соглашений об особой интерпретации IP-адресов:

  • eсли весь IP-адрес состоит только из двоичных нулей, то он обозначает адрес того узла, который сгенерировал этот пакет; этот режим используется только в некоторых сообщениях ICMP;
  • eсли в поле номера сети стоят только нули, то по умолчанию считается, что узел назначения принадлежит той же самой сети, что и узел, который отправил пакет;
  • eсли все двоичные разряды IP-адреса равны 1, то пакет с таким адресом назначения должен рассылаться всем узлам, находящимся в той же сети, что и источник этого пакета. Такая рассылка называется ограниченным широковещательным сообщением (limited broadcast);
  • eсли в поле номера узла назначения стоят только единицы, то пакет, имеющий такой адрес, рассылается всем узлам сети с заданным номером сети. Например, в сети 192.190.21.0 с маской 255.255.255.0 пакет с адресом 192.190.21.255 доставляется всем узлам сети этой сети. Такая рассылка называется широковещательным сообщением (broadcast).
Читайте также:  Как наладить экран на телефоне

Динамические IP-адреса

IP-адрес называют динамическим, если он назначается автоматически при подключении устройства к сети и используется в течение ограниченного промежутка времени, как правило, до завершения сеанса подключения.

Адресация в IP

IP-адрес любого узла сети записан 32-разрядным двоичным числом, в отличии от физических (МАС) адресов, которые зависят от конкретной сетевой технологии. Определения IP-адреса узла его физическому адресу внутри сети определяется с помощью широковещательных запросов ARP-протокола. IP-адрес имеет четыре числа в диапазоне 0-255, представлены в (двоичной, восьмеричной, десятичной или шестнадцатеричной) системе счисления и разделены точками.

Адреса основан на двух частях, префикс (n) — сетевая часть, которая общая для всех узлов данной сети, и хост-части (h) — уникальная для каждого узла. Соотношение размеров частей адреса зависит от принятого метода адресации, которых уже сменилось 3 раза.

Сначала (1980 г) было разделение на основе класса и разрешалось три фиксированных размера префикса — 1,2 или 3 байта. Они описывали класс сети. В таблице 1 наведена структура адресов пяти классов сетей. Класс D создан для группового вещания, тут хост-часть адреса отсутствует, а n…n являет идентификатор группы. Класс Е описан как резерв для будущих применений.

Класс сети 1 байт 2 байт 3 байт 4 байт Число сетей Число узлов в сети
A 0nnnnnnn hhhhhhhh hhhhhhhh hhhhhhhh 126

16 млн.

B 10nnnnnn nnnnnnnn hhhhhhhh hhhhhhhh

16 тыс.

65 тыс.

C 110nnnnn nnnnnnnn nnnnnnnn hhhhhhhh

2 млн.

254 D 1110nnnn nnnnnnnn nnnnnnnn nnnnnnnn

256 млн.

Не ограничено E 11110nnn nnnnnnnn nnnnnnnn nnnnnnnn

128 млн.

Резерв

В 1985 году было введено деление на подсети, относительно разных размеров. Адрес подсети (s) реализует несколько старших бит, которые отводятся при стандартной классовом делении под хост-часть адреса. К примеру: структура адреса класса С имеет вид: 110nnnnn.nnnnnnnn.nnnnnnnn.sssshhhh — подсеть с 4-битной хост-частью адреса, которая может мметь 14 узлов. Подсети могут делиться на еще более меньшие подсети. Деление на подсети не допускает пересечение границы адресов класса. К примеру адрес — 110nnnnn.nnnnnnnn.nnnnnnss.sshhhhhh не является возможным, так как по первым битам он принадлежит к классу С (а для класса В такая длина префикса допустимая).

Такие результаты были не годными, и в 1993 году был принят внеклассовый принцип к определению длины префикса. После длина префикса разная, что разрешало гибко распределять адресное пространство. Комбинации из всех единиц или нулей в префикса и/или хост-части зарезервированы под широковещательные сообщения и служебных целей:

  • Нулевой адрес не используется
  • Нулевая хост-часть адреса в старых протоколах обмена RIP (маршрутная информация) означает, что передается адрес подсети.
  • Нулевой префикс определяет принадлежность получателя к сети отправителя
  • Единицы во всех битах адреса определяет широковещательность рассылки пакета всем узлам сети отправителя
  • Единицы во всех битах хост-части (префикс при этом не единичный и ненулевой) означают широковещательность рассылки пакета всем узлам сети, заданной префиксом.
  • Адреса 127.х.х.х зарезервированы для отладочных задач. Пакет, отправленный протоколом верхнего уровня по любому из таких адресов (обычно это 127.0.0.1) по сети не передается, а сразу поступает на вверх по протокольному стеку этого же узла (loopback).

При записи адреса можно применять форму, где последний элемент указывает длину префикса в битах. К примеру, адрес сети стандартного класса С может иметь десятичный вид — 199.123.456.0/24, а адрес 199.123.456.0/28 определяет уже подсеть с числом хостов 14.

Три варианта адресации различаются в подаче информации, которая нужна маршрутизатору. При классовой организации, кроме адреса больше ничего не нужно, поскольку положения префикса фиксировано. Протокол RIP сетевой маршрут узнавал по нулевой хост-части, где хоть один единичный бит определял маршрут узла. При определении подсети нужна дополнительная информация о длине префикса. При переходе на подсети было принято, что адресация внешних сетей реализована по классовому признаку, а локальные маршрутизаторы которые работают с подсетями, получают значение масок при ручной настройке. Появилась новый тип — подсетевой маршрут. Новые протоколы обмена маршрутным данными распознавала префиксы разного размера.

Читайте также:  Как найти украденный телефон через интернет

На сегодня форма префикса задается в виде маски подсети. Маска являет собою 32-битное число, которое записано по правилам IP-адреса, где старшие биты соответствовали префиксу и имели единичное значение. Маски могут иметь значение из неограниченного списка (таблица 2). Перед ненулевым байтом маски значения могут быть только 255, после байта — только нули. Создание маски наведено в таблице 3. Количество разрешимых адресов хостов в сети определяется по формуле — N = 2 (32 — P) — 2, где Р — длина префикса. Префиксы длиной 31 или 32 бит невозможны для реализации, префикса длиной 30 бит может адресовать только два узла (пример протокол РРР). Адресом сети можно считать адрес любого ее узла с обнуленными битами хост-части.

В десятичном виде диапазон адресов и маски сети классов:

  • Класс А: 1.0.0.0 — 126.0.0.0, маска 255.0.0.0
  • Класс В: 128.0.0.0 — 191.255.0.0, маска 255.255.0.0
  • Класс С: 192.0.0.0 — 223.255.255.0, маска 255.255.255.0
  • Класс D: 224.0.0.0 — 239.255.255.255, маска 255.255.255.255
  • Класс Е: 240.0.0.0 — 247.255.255.255, маска 255.255.255.255

Таблица 2 — Длина префикса, значение маски и количество узлов подсети

Длина Маска Число узлов
32 255.255.255.255
31 255.255.255.254
30 255.255.255.252 2
29 255.255.255.248 6
28 255.255.255.240 14
27 255.255.255.224 30
26 255.255.255.198 62
25 255.255.255.128 126
24 255.255.255.0 254
23 255.255.254.0 510
22 255.255.252.0 1022
21 255.255.248.0 2046
20 255.255.240.0 4094
19 255.255.224.0 8190
18 255.255.192.0 16382
17 255.255.128.0 32766
16 255.255.0.0 65534
15 255.254.0.0 131070
14 255.252.0.0 262142
13 255.248.0.0 524286
12 255.240.0.0 1048574
11 255.224.0.0 2097150
10 255.198.0.0 4М-2
9 255.128.0.0 8М-2
8 255.0.0.0 16М-2
7 254.0.0.0 32М-2
6 252.0.0.0 64М-2
5 248.0.0.0 128М-2
4 240.0.0.0 256М-2
3 224.0.0.0 512М-2
2 198.0.0.0 1024М-2
1 128.0.0.0 2048М-2
0.0.0.0 4096М-2

Таблица 2 — Возможные значения элементов масок

Двоичное Десятичное
11111111 255
11111110 254
11111100 252
11111000 248
11110000 240
11100000 224
11000000 192
10000000 128
00000000

Деление на сети имеет административный характер — адреса сетей которые входят в глобальную сеть Интернет, распределяются централизованно организацией Internet NIC. Деление сетей на подсети возможно лично владельцем сайта или произвольно. При реализации масок техническая граница между сетями и подсетями почти стирается. Для частных сетей которые не связанны маршрутизаторами с глобальной сетью, имеются специальные адреса сетей:

  • Класс А: 10.0.0.0 — 1 сеть
  • Класс В: 172.16.0.0 — 172.31.0.0 — 16 сетей
  • Класс С: 192.168.0.0 — 192.168.255.0 — 256 сетей

На рис.1 наведен пример разбивки сети 192.168.0.0 класса С на четыре подсети. Сеть1(S1) — 126 узлов (маска 255.255.255.128), Сеть2(S2) — 62 узла (маска 255.255.255.192), Сеть3 и Сеть4 (S3, S4) — по 30 узлов (255.255.255.224). Наглядно видно пространство адресов и видно ошибки несогласованности адреса и размера подсети.

Рисунок — 1 Примеры распределения адресов IP-сети: а, б — правильно, в — неправильно

IP-адреса и маски создаются узлами при их настройке автоматически с реализацией DHCP/BootP или вручную. Ручное определение требует внимание, так как некорректное назначение масок и адресов приводит к невозможности связи по IP, однако если учитывать надежность и безопасность то это более правильнее.

DHCP — протокол который реализует автоматическое динамическое назначение IP-адресов и масок подсетей для узлов-клиентов DHCP-сервера. По окончанию работы узла его адрес возвращается в пул и может быть назначен для другого узла.

BootP — протокол который выполняет аналогичные задачи, но использует статическое распределение ресурсов. При соединении узле посылает широковещательный запрос, на который BootP сервер ответит пакетом с IP-адресом и масок а также адресами шлюзов и серверов службы имен. Понятно, что при отключении узла его IP не может быть использован другими узлами.

Adblock detector