Как высчитать коэффициент вариации
Содержание
- Понятие коэффициента вариации
- Формула расчета коэффициента вариации
- Пример расчета коэффициента вариации
- Онлайн калькулятор расчета коэффициента вариации
- Вычисление коэффициента вариации
- Шаг 1: расчет стандартного отклонения
- Шаг 2: расчет среднего арифметического
- Шаг 3: нахождение коэффициента вариации
- Калькулятор для расчета начальной максимальной цены контракта методом сопоставимых рыночных цен
- Коммерческие предложения
- Коммерческие предложения
- Импортировать данные Ошибка импорта
Понятие коэффициента вариации
В статистике под вариацией величин того или иного показателя в совокупности понимается различие его уровней у тех или иных единиц анализируемого состава в один и тот же период либо момент исследования. В том случае, когда выполняется анализ отличий величин показателя у одного и того же предмета, у одной и той же единицы совокупности в различные периоды или моменты времени, то это будет уже именоваться не вариацией, а колебаниями или изменениями в течении определенного периода.
Размещено на www.rnz.ru
Для изучения таких колебаний применяются свои методы анализа, имеющие отличия от методов анализа вариации. Объективным фактором возникновения явления вариации выступает различие в условиях деятельности тех или иных исследуемых объектов совокупности. Например, на работу торгового предприятия оказывает влияние уровень конкуренции, налогов, применение передовых технологий в своей деятельности, состояние оборудования и т.п. Колеблемость характерна практически для всех природный явлений и граней общественной жизни. Однако имеются и неварьируемые показатели, которые образуются в случае фиксации тех или иных явлений в правовых актах. Например, не может варьировать количество генеральных директоров у предприятия, согласно законодательству он должен быть один. Такие неварьирующие объекты, как правило, не являются предметом или объектом статистического исследования. В нашей жизни колеблемость признаков выступает важным фактором, оказывающим на нее влияние. Например, изменение гаммы типоразмеров деталей позволяет сформировать оптимальный ассортимент, но при этом высокий уровень вариации в рамках одного типоразмера говорит о высоком уровне брака и необходимости внедрения соответствующих мероприятий. Значительный уровень вариации товарооборота или цен может свидетельствовать о монополизации рынка или о плохом управлении запасами и требовать соответствующих мер и т.п. Сказанное позволяет утверждать, что в общественной жизни, которая с точки зрения статистики выступает массовой совокупностью, объективно присутствует изменчивость различных признаков и элементов, что диктует актуальность исследования данного явления с применением специальных показателей для формирования оптимальных методов управления им. Коэффициент вариации является одним из таких показателей. При этом он относится к группе относительных показателей вариации. Рассматриваемый коэффициент — это относительный показатель, характеризующий отношение среднего квадратического отклонения к средней величине изучаемого признака, и выражается, как правило, в процентах. В указанном критерии отражается соотношение уровня влияния факторов, которые приводят к возникновению колеблемости, и общих условий всех элементов совокупности, которые порождают типическую величину признака — его среднее значение. Коэффициент вариации применяется для изучения степени изменчивости различных признаков одной и той же совокупности и изменчивости в различных совокупностях, которые обладают разными значениями средних величин.
Формула расчета коэффициента вариации
Являясь отношением среднего квадратического отклонения к средней величине, в общем случае анализируемый показатель вычисляется по следующей формуле:
Формула расчета коэффициента вариации
где σ — среднее квадратическое отклонение;
х — среднее значение исследуемого показателя.
Вычисление рассматриваемого показателя посредством расчета отклонений от средней величины отражает его объективное содержание, но его получение достаточно трудоемко, и для повышения точности выводов требуются расчеты среднего показателя и отклонений без округлений или со значительным количеством цифр после запятой. Поэтому в практических вычислениях делимое может быть вычислено с использованием другой, полученной из общей, формуле вычисления среднего квадратического отклонения в форме разности среднего квадрата элемента и квадрата среднего значения. Таким образом, формула расчета исследуемого показателя, дающая более точный результат, выглядит следующим образом:
Формула расчета точного значения коэффициента вариации
Пример расчета коэффициента вариации
Приведем пример расчета коэффициента вариации цены. Исходные данные для вычисления коэффициента вариации и необходимые промежуточные расчеты приведены в таблице:
№ предложения цены | Значение цены, руб., х | (xi — хсреднее) 2 |
---|---|---|
1 | 17,74 | 3,8 |
2 | 13,69 | 4,41 |
3 | 16 | 0,04 |
4 | 11,87 | 15,37 |
5 | 11,21 | 20,98 |
6 | 15,09 | 0,49 |
7 | 19,49 | 13,69 |
8 | 19,97 | 17,47 |
9 | 17,03 | 1,54 |
Итого | 142,09 | 77,79 |
Для вычисления используем следующую формулу:
Определим средне значение: хсреднее = (17,74 + 13,69 + 16 + 11,87 + 11,21 + 15,09 + 19,49 + 19,97 + 17,03) / 9 = 15,79 руб.
Среднее квадратическое отклонение: σ = √(77,79 / 9) = 2,94.
Коэффициент вариации: ν = 2,94 / 15,79 * 100 = 18,62%.
Интерпретация. Полученное значение исследуемого показателя показывает, что колеблемость цены относительно небольшая и составляет 18,62% среднего уровня. Полученное значение также указывает на однородность исследуемой совокупности, т.к. полученное значение коэффициента вариации менее 33%.
Внимание! Расчет коэффициента вариации по 44 ФЗ имеет свои особенности, поэтому приводим отдельный пример расчета коэффициента вариации по 44 ФЗ
Онлайн калькулятор расчета коэффициента вариации
В заключении приводим небольшой онлайн калькулятор расчета коэффициента вариации онлайн, используя который, Вы можете самостоятельно выполнить расчет указанного показателя онлайн. При заполнении формы калькулятора расчета коэффициента вариации онлайн внимательно соблюдайте размерность полей, что позволит выполнить вычисления онлайн быстро и точно. Дробные величины должны вводиться с точкой, а не с запятой! В форме онлайн калькулятора уже содержатся данные условного примера, чтобы пользователь мог посмотреть, как работает онлайн калькулятор расчета коэффициента вариации. Для расчета данного показателя по своим данным просто внесите их в соответствующие поля формы онлайн калькулятора и нажмите кнопку "Выполнить расчет". Обратите внимание, что расчет коэффициента вариации онлайн калькулятором осуществляется только по несгруппированным данным.
Онлайн-калькулятор расчета коэффициента вариации:
Пришлите условия задач для оценки стоимости их решения
Одним из основных статистических показателей последовательности чисел является коэффициент вариации. Для его нахождения производятся довольно сложные расчеты. Инструменты Microsoft Excel позволяют значительно облегчить их для пользователя.
Вычисление коэффициента вариации
Этот показатель представляет собой отношение стандартного отклонения к среднему арифметическому. Полученный результат выражается в процентах.
В Экселе не существует отдельно функции для вычисления этого показателя, но имеются формулы для расчета стандартного отклонения и среднего арифметического ряда чисел, а именно они используются для нахождения коэффициента вариации.
Шаг 1: расчет стандартного отклонения
Стандартное отклонение, или, как его называют по-другому, среднеквадратичное отклонение, представляет собой квадратный корень из дисперсии. Для расчета стандартного отклонения используется функция СТАНДОТКЛОН. Начиная с версии Excel 2010 она разделена, в зависимости от того, по генеральной совокупности происходит вычисление или по выборке, на два отдельных варианта: СТАНДОТКЛОН.Г и СТАНДОТКЛОН.В.
Синтаксис данных функций выглядит соответствующим образом:
= СТАНДОТКЛОН(Число1;Число2;…)
= СТАНДОТКЛОН.Г(Число1;Число2;…)
= СТАНДОТКЛОН.В(Число1;Число2;…)
- Для того, чтобы рассчитать стандартное отклонение, выделяем любую свободную ячейку на листе, которая удобна вам для того, чтобы выводить в неё результаты расчетов. Щелкаем по кнопке «Вставить функцию». Она имеет внешний вид пиктограммы и расположена слева от строки формул.
Выполняется активация Мастера функций, который запускается в виде отдельного окна с перечнем аргументов. Переходим в категорию «Статистические» или «Полный алфавитный перечень». Выбираем наименование «СТАНДОТКЛОН.Г» или «СТАНДОТКЛОН.В», в зависимости от того, по генеральной совокупности или по выборке следует произвести расчет. Жмем на кнопку «OK».
Открывается окно аргументов данной функции. Оно может иметь от 1 до 255 полей, в которых могут содержаться, как конкретные числа, так и ссылки на ячейки или диапазоны. Ставим курсор в поле «Число1». Мышью выделяем на листе тот диапазон значений, который нужно обработать. Если таких областей несколько и они не смежные между собой, то координаты следующей указываем в поле «Число2» и т.д. Когда все нужные данные введены, жмем на кнопку «OK»
Шаг 2: расчет среднего арифметического
Среднее арифметическое является отношением общей суммы всех значений числового ряда к их количеству. Для расчета этого показателя тоже существует отдельная функция – СРЗНАЧ. Вычислим её значение на конкретном примере.
-
Выделяем на листе ячейку для вывода результата. Жмем на уже знакомую нам кнопку «Вставить функцию».
В статистической категории Мастера функций ищем наименование «СРЗНАЧ». После его выделения жмем на кнопку «OK».
Запускается окно аргументов СРЗНАЧ. Аргументы полностью идентичны тем, что и у операторов группы СТАНДОТКЛОН. То есть, в их качестве могут выступать как отдельные числовые величины, так и ссылки. Устанавливаем курсор в поле «Число1». Так же, как и в предыдущем случае, выделяем на листе нужную нам совокупность ячеек. После того, как их координаты были занесены в поле окна аргументов, жмем на кнопку «OK».
Шаг 3: нахождение коэффициента вариации
Теперь у нас имеются все необходимые данные для того, чтобы непосредственно рассчитать сам коэффициент вариации.
-
Выделяем ячейку, в которую будет выводиться результат. Прежде всего, нужно учесть, что коэффициент вариации является процентным значением. В связи с этим следует поменять формат ячейки на соответствующий. Это можно сделать после её выделения, находясь во вкладке «Главная». Кликаем по полю формата на ленте в блоке инструментов «Число». Из раскрывшегося списка вариантов выбираем «Процентный». После этих действий формат у элемента будет соответствующий.
Снова возвращаемся к ячейке для вывода результата. Активируем её двойным щелчком левой кнопки мыши. Ставим в ней знак «=». Выделяем элемент, в котором расположен итог вычисления стандартного отклонения. Кликаем по кнопке «разделить» (/) на клавиатуре. Далее выделяем ячейку, в которой располагается среднее арифметическое заданного числового ряда. Для того, чтобы произвести расчет и вывести значение, щёлкаем по кнопке Enter на клавиатуре.
Таким образом мы произвели вычисление коэффициента вариации, ссылаясь на ячейки, в которых уже были рассчитаны стандартное отклонение и среднее арифметическое. Но можно поступить и несколько по-иному, не рассчитывая отдельно данные значения.
-
Выделяем предварительно отформатированную под процентный формат ячейку, в которой будет выведен результат. Прописываем в ней формулу по типу:
Вместо наименования «Диапазон значений» вставляем реальные координаты области, в которой размещен исследуемый числовой ряд. Это можно сделать простым выделением данного диапазона. Вместо оператора СТАНДОТКЛОН.В, если пользователь считает нужным, можно применять функцию СТАНДОТКЛОН.Г.
Существует условное разграничение. Считается, что если показатель коэффициента вариации менее 33%, то совокупность чисел однородная. В обратном случае её принято характеризовать, как неоднородную.
Как видим, программа Эксель позволяет значительно упростить расчет такого сложного статистического вычисления, как поиск коэффициента вариации. К сожалению, в приложении пока не существует функции, которая высчитывала бы этот показатель в одно действие, но при помощи операторов СТАНДОТКЛОН и СРЗНАЧ эта задача очень упрощается. Таким образом, в Excel её может выполнить даже человек, который не имеет высокого уровня знаний связанных со статистическими закономерностями.
Отблагодарите автора, поделитесь статьей в социальных сетях.
Калькулятор для расчета начальной максимальной цены контракта методом сопоставимых рыночных цен по формулам, приведенным в приказе Минэкономразвития России от 02.10.2013 N 567 "Об утверждении Методических рекомендаций по применению методов определения начальной (максимальной) цены контракта, цены контракта, заключаемого с единственным поставщиком (подрядчиком, исполнителем)"
Описание работы калькулятора вы можете найти под калькулятором.
Калькулятор для расчета начальной максимальной цены контракта методом сопоставимых рыночных цен
Коммерческие предложения
Размер страницы:
Коммерческие предложения
Импортировать данные Ошибка импорта
Для определения начальной (максимальной) цены контракта (НМЦК) калькулятор выше использует формулу, приведенную в Приказе Министерства экономического развития РФ от 2 октября 2013 г. N 567 "Об утверждении Методических рекомендаций по применению методов определения начальной (максимальной) цены контракта, цены контракта, заключаемого с единственным поставщиком (подрядчиком, исполнителем)" 1
— НМЦК, определяемая методом сопоставимых рыночных цен (анализа рынка)
— количество (объем) закупаемого товара (работы, услуги)
— количество значений, используемых в расчете
— номер источника ценовой информации
— цена единицы товара, работы, услуги, представленная в источнике с номером i, скорректированная с учетом коэффициентов (индексов)
При этом калькулятор ожидает не менее трех значений в таблице коммерческих предложений, так как в целях определения НМЦК методом сопоставимых рыночных цен (анализа рынка) рекомендуется использовать не менее трех цен товара, работы, услуги, предлагаемых различными поставщиками (подрядчиками, исполнителями) 2
Также калькулятор определяет коэффициент вариации по формуле:
, выраженный в процентах, где
— коэффициент вариации
— средняя арифметическая величина цены единицы товара, работы, услуги
— среднее квадратичное отклонение, рассчитываемое по формуле
, где
— номер источника ценовой информации
— цена единицы товара, работы, услуги, представленная в источнике с номером i, скорректированная с учетом коэффициентов (индексов)
— количество значений, используемых в расчете
При этом, совокупность значений, используемых в расчете, при определении НМЦК считается неоднородной, если коэффициент вариации цены превышает 33%. Если коэффициент вариации превышает 33%, целесообразно провести дополнительные исследования в целях увеличения количества ценовой информации, используемой в расчетах 3