Как производится умножение вектора на скаляр

Основы векторного исчисления

Вектором называется количественная характеристика, имеющая не только числовую величину, но и направление. Иногда говорят, что вектор это направленный отрезок.

Векторная система обозначений имеет два существенных пре­имущест­ва.

1. Формулировки физических законов в векторной форме не зависят от выбора осей координат. Векторная система обозначений представляет собой такой язык, в котором формулировки имеют физическое содержание даже без введения системы координат.

2. Векторная система обозначений является компактной. Многие фи­зические законы выражаются через векторные величины.

Определим основные операции, которые можно производить с век­то­ра­ми.

Равенство двух векторов

Два вектора и равны, если они имеют одинаковую абсолютную величину и одинаковое направление, можно сравнивать два вектора, опре­деленные в разных точках пространства и в разные моменты времени. Параллельный перенос не меняет значения вектора.

Сложение векторов

Суммой двух векторов называют вектор , проведенный из начальной точки вектора к конечной точке вектора , если вектор перенести параллельно самому себе так, чтобы его начало совпадало с концом вектора . Причем = + = + , если совмес­тить начало векторов и , то вектор = + = + является диагональю параллелограмма, построенного на векторах и как на его сторонах и выходящий из общего начала. Сумма векторов не зависит от порядка, в котором складываются векторы.

Умножение вектора на скаляр

Произведением вектора на число называется вектор , длина которого равна длине первого вектора, умноженной на модуль числа, а направление либо совпадает с начальным вектором, либо противоположно.

и , если и , если .

Произведение числа 0 на любой вектор дает нулевой вектор, который по сути таковым не является ибо он не имеет длины она равна “нулю” и не имеет направления в пространстве. Сумма двух векторов равна нулю тогда и только тогда, когда они равны по модулю и противоположны по направ­лению. Если k – число, то т. е. умножение вектора на скаляр дистрибутивно.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9375 — | 7304 — или читать все.

78.85.5.224 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

В статье узнаете что такое вектор, векторные компоненты, единичный вектор, как складывать вектора, умножать вектора на скаляр, скалярное, векторное и смешанное произведение двух векторов.

Сохранение физической величины с вектором обычно означает совершенно иную ситуацию, чем просто сохранение ее скалярной длины. Постоянное значение импульса p (скаляр) может означать совершенно иную ситуацию, чем постоянный вектор p.

Читайте также:  Как поменять пароль на роутере с телефона

Вектор должен иметь три необходимые характеристики: значение (длина), направление, начало и конец.

Любое изменение любого из этих признаков — длины, направления или начало с концом — означает, что создан другой вектор. Два вектора равны тогда и только тогда, когда они имеют равную длину, направление и начало с концом.

Векторные компоненты

Компонентами вектора являются его проекции на оси системы координат.

Также в трехмерном пространстве векторы A называются векторами, которые являются проекциями этого вектора A на оси системы координат.

Имея вектор A, мы погружаем его в систему координат x, y, z. Векторы, являющиеся проекциями вектора A на оси системы, называются векторными компонентами вектора A. Вектор A является векторной суммой составляющих векторов Ax, Ay и Az .

Единичный вектор

Единичный вектор, имеющий то же направление, что и вектор, на который он ссылается, важен, но его длина всегда равна 1.

Единичные векторы осей координат. Мы также присваиваем единичные векторы оси системы отсчета. а) относится к правовращающей системе и б) к левосторонней системе.

Сложение векторов

Сумма вектора обычно не совпадает с суммой скалярных величин:

Добавление двух или более векторов друг к другу сводится к добавлению их компонентов, то есть проекций на опорные оси. Результирующий вектор называется случайным вектором. Для двух векторов результирующий вектор является диагональю параллелограмма, построенного на этих векторах. Метод параллелограмма.

В случае большего числа векторов результирующий вектор получается путем рисования одного из этих векторов, затем в конце первого вектора мы начинаем второй, в конце второго мы даем начало третьего и так далее. Полученный вектор является вектором, начало которого находится в начале первого из добавленных векторов. и его конец в конце последнего. При изменении порядка сложения результирующий вектор (красный) не меняет длину, направление:

Это правило добавления векторов также действует в трехмерном пространстве:

Умножение вектора на скаляр

Самым простым умножением, выполняемым на векторах, является умножение вектора на скаляр (число). Такое умножение не меняет направление вектора, но, как правило, меняет его длину и может изменить его конец (когда скаляр является отрицательным числом). Когда вектор A умножается на α-скаляр, мы получаем новый вектор B:

Скалярное произведение и векторное произведение двух векторов являются очень важными направления в физике и геометрии. Существует также смешанное произведение трех векторов.

Скалярное произведение двух векторов

Формально скалярное произведение векторов представляет собой точку, и ее значение определяется зависимостью

Скалярное произведение описывает способ, которым оба вектора видят друг друга, то есть как долго тень (проекция) отбрасывает каждый из векторов в своего партнера, когда угол между ними равен φ

B cos φ — длина тени, которую вектор B выбрасывает в вектор A. Аналогично, A cos φ — длина тени, которую вектор A выбрасывает в вектор B.

Читайте также:  Как определить емкость флешки

Когда длина проекции (тени) одного из векторов равна нулю, тогда длина проекции второго вектора равна нулю, то есть A • B = 0. Это означает, что эти векторы не работают в одном и том же направлении вообще. Работа, которую мы выполняем при движении автомобиля, зависит не только от приложенной силы F, но и от угла, который создает направление силы и направление пути.

Так как единичные векторы оси системы отсчета х, у и z, которые обозначают векторы ех, еY и еz, перпендикулярны друг к другу, то в виду того, что А • В = АВcosφ и что cos 0 = 1 и cos 90 o = 0, мы получаем произведение значений этих единичных векторов:

Выполнение аналогичного умножения на векторы A и B

мы получили новое выражение для скалярного произведения двух векторов A и B

Значение скалярного произведения двух векторов A и B можно записать в виде двух эквивалентных выражений:

Сравнивая оба выражения, мы находим выражение для угла между векторами A и B:

Векторное произведение двух векторов

Многие важные величины в науке и технике определяются вектором, который является произведением двух других векторов. В таких случаях произведение этих векторов, называемое векторным произведением , приводит к третьему вектору.

В этом случае задача состоит в том, чтобы определить все три особенности вектора C, являющегося произведением векторного произведения векторов A и B:

Произведение векторов A и B , приводящее к третьему вектору C, отмечено диагональным крестом

Направление

Вектор С такой, что вектор перпендикулярен к плоскости, образованной векторами A и B, которая перпендикулярна как к вектору A и B.

Длина

вектор С равен значению параллелограмма, построенного на векторах А и В. Числовой C = ABsin φ.

Начало и конец

Вектор С определяет правое направление движения шнека во время нанесения первого вектора, а именно А или B.

Изменение порядка применения векторов означает изменение знака векторного произведения.

Таким образом, действительное свойство векторного произведения выглядит следующим образом A*B= -B*A

В отличие от скалярного произведения, векторное произведение некоммутативно.

Мы встретимся с векторным произведением на протяжении всего курса физики. Это также часто встречается в механике, а также в науке об электричестве и магнетизме.

В повседневной жизни векторное произведение находится в виде момента силы во вращательном движении. Мы воздействуем на вращательное движение тем эффективнее, чем больше применяем момент силы.

При откручивании гайки гаечным ключом речь идет не только о силе F, но и о способе ее применения (длина рычага R и угол, который создает рычаг с направлением силы).

Все эти зависимости элегантно включены в одно выражение в виде векторного произведения:

Хотя составляющие вектора C, который является произведением векторного произведения векторов A и B, уже включены в его длину и направление, но имея данные составляющих векторов A и B, мы можем использовать их для определения компонентов вектора C в форме матрицы:

Читайте также:  Как посмотреть удаленную историю на андроиде

Удобнее всего рассчитать этот определитель, расширив относительно первой строки.

Смешанное произведение трех векторов

Смешанное произведение трех векторов является скалярным значением, равным значению детерминанта

Геометрическая интерпретация: смешанное произведение численно равно объему V параллелепипеда, растянутому по векторам A, B и C:

Циклическая корректировка векторов в смешанном произведении не меняет значение этого произведения, то есть:

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Физика > Умножение векторов на скаляр

Умножение векторов на число: описание терминов и определения вектора и скаляра, как провести умножение векторов, свойства вектора и скаляра, пример с графиком.

При умножении вектора на скаляр меняется величина вектора, но не направление.

Задача обучения

  • Обобщить взаимодействие между векторами и скалярами.

Основные пункты

  • Вектор характеризуется величиной и направлением.
  • Скаляр отображается лишь величиной.
  • Умножение вектора на скаляр эквивалентно умножению вектора величины на скаляр.

Термины

  • Вектор – количество, обладающее величиной и направлением (между двумя точками).
  • Скаляр – количество с величиной (лишено направления).
  • Величина – число вектора, указывающее на длину.

Обзор

Вектор и скаляры отображают разные типы физических величин, но иногда вынуждены контактировать. Конечно, они обладают разными размерами в пространстве, поэтому добавление невозможно. Однако вектор можно умножить на скаляр, а вот умножить скаляр на вектор не получится.

Чтобы проделать подобную операцию, следует умножать компоненты, а именно величины. Это создаст новый вектор с тем же направлением, но будет уже результатом двух величин.

Пример

Допустим, вы располагаете вектором А с определенными величиной и направлением. Если умножить его на скаляр с величиной 0.5, то новый вектор будет вдвое меньше изначального. Если же величина 3, то втрое больше. Чтобы разобраться детальнее, возьмем силу гравитации. Сила отображает вектор с величиной, зависящей от скаляра (масса), а направление идет вниз. Если массу удвоить, то сила тяжести также удвоится.

(I) – Умножение вектора А на скаляр (а = 0.5) создает вектор В, который вдвое длиннее.

(Ii) – Умножение вектора А на 3 утраивает его длину.

(Iii) – Удвоение массы (скаляр) удваивает и силу тяжести (вектор).

В физике умножение вектора на число приносит много пользы. Большая часть единиц в векторных величинах выступает внутренними скалярами, умноженными на вектор. К примеру, м/с для отображения скорости состоит их двух величин: скаляр длины в метрах и скаляр времени в секундах. Теперь вы знаете, как проводить умножение векторов.

Adblock detector