Как присвоить массив массиву

Нужно массиву double а[n] присвоить массив double b[n]. Как реализовать? Без цикла.

3 ответа 3

Голые массивы в С++ являются некопируемыми объектами. Они не копируются ни при инициализации, ни через присваивание. (На массивы, обернутые в классы и копируемые неявно и опосредованно вместе с классом, это ограничение не распространяется.)

Поэтому присвоить массив double а[n] массиву double b[n] у вас никак не получится. Либо явный цикл, либо скрытый цикл, типа memcpy , std::copy и т.п.

Разумеется настоящие "кул хацк0ры" не удержатся от соблазна предложить такое решение

но с точки зрения языка С++ такой код нарушает правила aliasing и его поведение не определено.

Поскольку массивы являются объектами, их можно использовать в инструкциях присваивания, как и другие типы объектов. Because arrays are objects, you can use them in assignment statements like other object types. Переменную массива содержит указатель на данные, содержащие элементы массива и ранг и длина информацию и присваивания копирует только этот указатель. An array variable holds a pointer to the data constituting the array elements and the rank and length information, and an assignment copies only this pointer.

Чтобы присвоение одного массива другому To assign one array to another array

Убедитесь, что два массива имеют одинаковый ранг (число измерений) и совместимый тип данных элементов. Ensure that the two arrays have the same rank (number of dimensions) and compatible element data types.

Используйте стандартный оператор присваивания для назначения исходного массива в массив назначения. Use a standard assignment statement to assign the source array to the destination array. Не выполняйте либо имя массива в круглые скобки. Do not follow either array name with parentheses.

Когда вы назначаете один массив в другой, применяются следующие правила: When you assign one array to another, the following rules apply:

Равенство ранга. Equal Ranks. Ранг (число измерений) массива назначения должен быть таким же, как и для исходного массива. The rank (number of dimensions) of the destination array must be the same as that of the source array.

Предоставляемые ранги два массива равны, размеры не обязательно должны совпадать. Provided the ranks of the two arrays are equal, the dimensions do not need to be equal. Число элементов в определенном измерении можно изменить во время назначения. The number of elements in a given dimension can change during assignment.

Типы элементов. Element Types. Либо обоих массивов должны быть ссылочный тип элементов или оба массива должны иметь тип значения элементов. Either both arrays must have reference type elements or both arrays must have value type elements. Для получения дополнительной информации см. Value Types and Reference Types. For more information, see Value Types and Reference Types.

Если оба массива состоят из значений, их типы должны полностью совпадать. If both arrays have value type elements, the element data types must be exactly the same. Единственным исключением из этого является, можно назначить массив Enum элементы в массив, базовый тип Enum . The only exception to this is that you can assign an array of Enum elements to an array of the base type of that Enum .

Если оба массива имеют ссылочный тип элементов, тип элемента источника должен быть производным от типа элемента назначения. If both arrays have reference type elements, the source element type must derive from the destination element type. Это делается с помощью двух массивов после той же связи наследования, как их элементов. When this is the case, the two arrays have the same inheritance relationship as their elements. Это называется ковариацией. This is called array covariance.

Компилятор выдает ошибку, если приведенные выше правила нарушены, например если типы данных несовместимы или ранги не равны. The compiler reports an error if the above rules are violated, for example if the data types are not compatible or the ranks are unequal. Вы можете добавить в код, чтобы убедиться в том, что массивы совместимы, прежде чем назначение обработки ошибок. You can add error handling to your code to make sure that the arrays are compatible before attempting an assignment. Можно также использовать оператор TryCast ключевое слово, если вы хотите избежать возникновения исключения. You can also use the TryCast Operator keyword if you want to avoid throwing an exception.

В этом посте я постараюсь окончательно разобрать такие тонкие понятия в C и C++, как указатели, ссылки и массивы. В частности, я отвечу на вопрос, так являются массивы C указателями или нет.

  • Я буду предполагать, что читатель понимает, что, например, в C++ есть ссылки, а в C — нет, поэтому я не буду постоянно напоминать, о каком именно языке (C/C++ или именно C++) я сейчас говорю, читатель поймёт это из контекста;
  • Также, я предполагаю, что читатель уже знает C и C++ на базовом уровне и знает, к примеру, синтаксис объявления ссылки. В этом посте я буду заниматься именно дотошным разбором мелочей;
  • Буду обозначать типы так, как выглядело бы объявление переменной TYPE соответствующего типа. Например, тип «массив длины 2 int’ов» я буду обозначать как int TYPE[2] ;
  • Я буду предполагать, что мы в основном имеем дело с обычными типами данных, такими как int TYPE , int *TYPE и т. д., для которых операции =, &, * и другие не переопределены и обозначают обычные вещи;
  • «Объект» всегда будет означать «всё, что не ссылка», а не «экземпляр класса»;
  • Везде, за исключением специально оговоренных случаев, подразумеваются C89 и C++98.
Читайте также:  Как открыть файл формата iso

Указатели. Что такое указатели, я рассказывать не буду. 🙂 Будем считать, что вы это знаете. Напомню лишь следующие вещи (все примеры кода предполагаются находящимися внутри какой-нибудь функции, например, main):

Также напомню следующее: char — это всегда ровно один байт и во всех стандартах C и C++ sizeof (char) == 1 (но при этом стандарты не гарантируют, что в байте содержится именно 8 бит :)). Далее, если прибавить к указателю на какой-нибудь тип T число, то реальное численное значение этого указателя увеличится на это число, умноженное на sizeof (T) . Т. е. если p имеет тип T *TYPE , то p + 3 эквивалентно (T *)((char *)p + 3 * sizeof (T)) . Аналогичные соображения относятся и к вычитанию.

Ссылки. Теперь по поводу ссылок. Ссылки — это то же самое, что и указатели, но с другим синтаксисом и некоторыми другими важными отличиями, о которых речь пойдёт дальше. Следующий код ничем не отличается от предыдущего, за исключением того, что в нём фигурируют ссылки вместо указателей:

Если слева от знака присваивания стоит ссылка, то нет никакого способа понять, хотим мы присвоить самой ссылке или объекту, на который она ссылается. Поэтому такое присваивание всегда присваивает объекту, а не ссылке. Но это не относится к инициализации ссылки: инициализируется, разумеется, сама ссылка. Поэтому после инициализации ссылки нет никакого способа изменить её саму, т. е. ссылка всегда постоянна (но не её объект).

Lvalue. Те выражения, которым можно присваивать, называются lvalue в C, C++ и многих других языках (это сокращение от «left value», т. е. слева от знака равенства). Остальные выражения называются rvalue. Имена переменных очевидным образом являются lvalue, но не только они. Выражения a[i + 2] , some_struct.some_field , *ptr , *(ptr + 3) — тоже lvalue.

Удивительный факт состоит в том, что ссылки и lvalue — это в каком-то смысле одно и то же. Давайте порассуждаем. Что такое lvalue? Это нечто, чему можно присвоить. Т. е. это некое фиксированное место в памяти, куда можно что-то положить. Т. е. адрес. Т. е. указатель или ссылка (как мы уже знаем, указатели и ссылки — это два синтаксически разных способа в C++ выразить понятие адреса). Причём скорее ссылка, чем указатель, т. к. ссылку можно поместить слева от знака равенства и это будет означать присваивание объекту, на который указывает ссылка. Значит, lvalue — это ссылка.

А что такое ссылка? Это один из синтаксисов для адреса, т. е., опять-таки, чего-то, куда можно класть. И ссылку можно ставить слева от знака равенства. Значит, ссылка — это lvalue.

Окей, но ведь (почти любая) переменная тоже может быть слева от знака равенства. Значит, (такая) переменная — ссылка? Почти. Выражение, представляющее собой переменную — ссылка.

Иными словами, допустим, мы объявили int x . Теперь x — это переменная типа int TYPE и никакого другого. Это int и всё тут. Но если я теперь пишу x + 2 или x = 3 , то в этих выражениях подвыражение x имеет тип int &TYPE . Потому что иначе этот x ничем не отличался бы от, скажем, 10, и ему (как и десятке) нельзя было бы ничего присвоить.

Этот принцип («выражение, являющееся переменной — ссылка») — моя выдумка. Т. е. ни в каком учебнике, стандарте и т. д. я этот принцип не видел. Тем не менее, он многое упрощает и его удобно считать верным. Если бы я реализовывал компилятор, я бы просто считал там переменные в выражениях ссылками, и, вполне возможно, именно так и предполагается в реальных компиляторах.

Более того, удобно считать, что особый тип данных для lvalue (т. е. ссылка) существует даже и в C. Именно так мы и будет дальше предполагать. Просто понятие ссылки нельзя выразить синтаксически в C, ссылку нельзя объявить.

Принцип «любое lvalue — ссылка» — тоже моя выдумка. А вот принцип «любая ссылка — lvalue» — вполне законный, общепризнанный принцип (разумеется, ссылка должна быть ссылкой на изменяемый объект, и этот объект должен допускать присваивание).

Теперь, с учётом наших соглашений, сформулируем строго правила работы со ссылками: если объявлено, скажем, int x , то теперь выражение x имеет тип int &TYPE . Если теперь это выражение (или любое другое выражение типа ссылка) стоит слева от знака равенства, то оно используется именно как ссылка, практически во всех остальных случаях (например, в ситуации x + 2 ) x автоматически конвертируется в тип int TYPE (ещё одной операцией, рядом с которой ссылка не конвертируется в свой объект, является &, как мы увидим далее). Слева от знака равенства может стоять только ссылка. Инициализировать (неконстантную) ссылку может только ссылка.

Читайте также:  Как посмотреть статистику истории в инстаграм

Операции * и &. Наши соглашения позволяют по-новому взглянуть на операции * и &. Теперь становится понятно следующее: операция * может применяться только к указателю (конкретно это было всегда известно) и она возвращает ссылку на тот же тип. & применяется всегда к ссылке и возвращает указатель того же типа. Таким образом, * и & превращают указатели и ссылки друг в друга. Т. е. по сути они вообще ничего не делают и лишь заменяют сущности одного синтаксиса на сущности другого! Таким образом, & вообще-то не совсем правильно называть операцией взятия адреса: она может быть применена лишь к уже существующему адресу, просто она меняет синтаксическое воплощение этого адреса.

Замечу, что указатели и ссылки объявляются как int *x и int &x . Таким образом, принцип «объявление подсказывает использование» лишний раз подтверждается: объявление указателя напоминает, как превратить его в ссылку, а объявление ссылки — наоборот.

Также замечу, что &*EXPR (здесь EXPR — это произвольное выражение, не обязательно один идентификатор) эквивалентно EXPR всегда, когда имеет смысл (т. е. всегда, когда EXPR — указатель), а *&EXPR тоже эквивалентно EXPR всегда, когда имеет смысл (т. е. когда EXPR — ссылка).

Итак, есть такой тип данных — массив. Определяются массивы, например, так:

Выражение в квадратных скобках должно быть непременно константой времени компиляции в C89 и C++98. При этом в квадратных скобках должно стоять число, пустые квадратные скобки не допускаются.

Подобно тому, как все локальные переменные (напомню, мы предполагаем, что все примеры кода находятся внутри функций) находятся на стеке, массивы тоже находятся на стеке. Т. е. приведённый код привёл к выделению прямо на стеке огромного блока памяти размером 5 * sizeof (int) , в котором целиком размещается наш массив. Не нужно думать, что этот код объявил некий указатель, который указывает на память, размещённую где-то там далеко, в куче. Нет, мы объявили массив, самый настоящий. Здесь, на стеке.

Чему будет равно sizeof (x) ? Разумеется, оно будет равно размеру нашего массива, т. е. 5 * sizeof (int) . Если мы пишем

то, опять-таки, место для массива будет целиком выделяться прямо внутри структуры, и sizeof от этой структуры будет это подтверждать.

От массива можно взять адрес ( &x ), и это будет самый настоящий указатель на то место, где этот массив расположен. Тип у выражения &x , как легко понять, будет int (*TYPE)[5] . В начале массива размещён его нулевой элемент, поэтому адрес самого массива и адрес его нулевого элемента численно совпадают. Т. е. &x и &(x[0]) численно равны (тут я лихо написал выражение &(x[0]) , на самом деле в нём не всё так просто, к этому мы ещё вернёмся). Но эти выражения имеют разный тип — int (*TYPE)[5] и int *TYPE , поэтому сравнить их при помощи == не получится. Но можно применить трюк с void * : следующее выражение будет истинным: (vo >.

Хорошо, будем считать, я вас убедил, что массив — это именно массив, а не что-нибудь ещё. Откуда тогда берётся вся эта путаница между указателями и массивами? Дело в том, что имя массива почти при любых операциях преобразуется в указатель на его нулевой элемент.

Итак, мы объявили int x[5] . Если мы теперь пишем x + 0 , то это преобразует наш x (который имел тип int TYPE[5] , или, более точно, int (&TYPE)[5] ) в &(x[0]) , т. е. в указатель на нулевой элемент массива x. Теперь наш x имеет тип int *TYPE .

Конвертирование имени массива в void * или применение к нему == тоже приводит к предварительному преобразованию этого имени в указатель на первый элемент, поэтому:

Операция []. Запись a[b] всегда эквивалентна *(a + b) (напомню, что мы не рассматриваем переопределения operator[] и других операций). Таким образом, запись x[2] означает следующее:

  • x[2] эквивалентно *(x + 2)
  • x + 2 относится к тем операциям, при которых имя массива преобразуется в указатель на его первый элемент, поэтому это происходит
  • Далее, в соответствии с моими объяснениями выше, x + 2 эквивалентно (int *)((char *)x + 2 * sizeof (int)) , т. е. x + 2 означает «сдвинуть указатель x на два int’а»
  • Наконец, от результата берётся операция разыменования и мы извлекаем тот объект, который размещён по этому сдвинутому указателю

Типы у участвовавших выражений следующие:

Также замечу, что слева от квадратных скобок необязательно должен стоять именно массив, там может быть любой указатель. Например, можно написать (x + 2)[3] , и это будет эквивалентно x[5] . Ещё замечу, что *a и a[0] всегда эквивалентны, как в случае, когда a — массив, так и когда a — указатель.

Теперь, как я и обещал, я возвращаюсь к &(x[0]) . Теперь ясно, что в этом выражении сперва x преобразуется в указатель, затем к этому указателю в соответствии с вышеприведённым алгоритмом применяется [0] и в результате получается значение типа int &TYPE , и наконец, при помощи & оно преобразуется к типу int *TYPE . Поэтому, объяснять при помощи этого сложного выражения (внутри которого уже выполняется преобразование массива к указателю) немного более простое понятие преобразования массива к указателю — это был немного мухлёж.

Читайте также:  Как переносить стиральную машину

А теперь вопрос на засыпку: что такое &x + 1 ? Что ж, &x — это указатель на весь массив целиком, + 1 приводит к шагу на весь этот массив. Т. е. &x + 1 — это (int (*)[5])((char *)&x + sizeof (int [5])) , т. е. (int (*)[5])((char *)&x + 5 * sizeof (int)) (здесь int (*)[5] — это int (*TYPE)[5] ). Итак, &x + 1 численно равно x + 5 , а не x + 1 , как можно было бы подумать. Да, в результате мы указываем на память, которая находится за пределами массива (сразу после последнего элемента), но кого это волнует? Ведь в C всё равно не проверяется выход за границы массива. Также, заметим, что выражение *(&x + 1) == x + 5 истинно. Ещё его можно записать вот так: (&x)[1] == x + 5 . Также будет истинным *((&x)[1]) == x[5] , или, что тоже самое, (&x)[1][0] == x[5] (если мы, конечно, не схватим segmentation fault за попытку обращения за пределы нашей памяти :)).

Массив нельзя передать как аргумент в функцию. Если вы напишите int x[2] или int x[] в заголовке функции, то это будет эквивалентно int *x и в функцию всегда будет передаваться указатель (sizeof от переданной переменной будет таким, как у указателя). При этом размер массива, указанный в заголовке будет игнорироваться. Вы запросто можете указать в заголовке int x[2] и передать туда массив длины 3.

Однако, в C++ существует способ передать в функцию ссылку на массив:

При такой передаче вы всё равно передаёте лишь ссылку, а не массив, т. е. массив не копируется. Но всё же вы получаете несколько отличий по сравнению с обычной передачей указателя. Передаётся ссылка на массив. Вместо неё нельзя передать указатель. Нужно передать именно массив указанного размера. Внутри функции ссылка на массив будет вести себя именно как ссылка на массив, например, у неё будет sizeof как у массива.

И что самое интересное, эту передачу можно использовать так:

Похожим образом реализована функция std::end в C++11 для массивов.

«Указатель на массив». Строго говоря, «указатель на массив» — это именно указатель на массив и ничто другое. Иными словами:

Однако, иногда под фразой «указатель на массив» неформально понимают указатель на область памяти, в которой размещён массив, даже если тип у этого указателя неподходящий. В соответствии с таким неформальным пониманием c и d (и b + 0 ) — это указатели на массивы.

Многомерные массивы. Если объявлено int x[5][7] , то x — это не массив длины 5 неких указателей, указывающих куда-то далеко. Нет, x теперь — это единый монолитный блок размером 5 x 7, размещённый на стеке. sizeof (x) равен 5 * 7 * sizeof (int) . Элементы располагаются в памяти так: x[0][0] , x[0][1] , x[0][2] , x[0][3] , x[0][4] , x[0][5] , x[0][6] , x[1][0] и так далее. Когда мы пишем x[0][0] , события развиваются так:

То же самое относится к **x . Замечу, что в выражениях, скажем, x[0][0] + 3 и **x + 3 в реальности извлечение из памяти происходит только один раз (несмотря на наличие двух звёздочек), в момент преобразования окончательной ссылки типа int &TYPE просто в int TYPE . Т. е. если бы мы взглянули на ассемблерный код, который генерируется из выражения **x + 3 , мы бы в нём увидели, что операция извлечения данных из памяти выполняется там только один раз. **x + 3 можно ещё по-другому записать как *(int *)x + 3 .

А теперь посмотрим на такую ситуацию:

Что теперь есть y? y — это указатель на массив (в неформальном смысле!) указателей на массивы (опять-таки, в неформальном смысле). Нигде здесь не появляется единый блок размера 5 x 7, есть 5 блоков размера 7 * sizeof (int) , которые могут находиться далеко друг от друга. Что есть y[0][0] ?

Теперь, когда мы пишем y[0][0] + 3 , извлечение из памяти происходит два раза: извлечение из массива y и последующее извлечение из массива y[0] , который может находиться далеко от массива y. Причина этого в том, что здесь не происходит преобразования имени массива в указатель на его первый элемент, в отличие от примера с многомерным массивом x. Поэтому **y + 3 здесь не эквивалентен *(int *)y + 3 .

Объясню ещё разок. x[2][3] эквивалентно *(*(x + 2) + 3) . И y[2][3] эквивалентно *(*(y + 2) + 3) . Но в первом случае наша задача найти «третий элемент во втором ряду» в едином блоке размера 5 x 7 (разумеется, элементы нумеруются с нуля, поэтому этот третий элемент будет в некотором смысле четвёртым :)). Компилятор вычисляет, что на самом деле нужный элемент находится на 2 * 7 + 3 -м месте в этом блоке и извлекает его. Т. е. x[2][3] здесь эквивалентно ((int *)x)[2 * 7 + 3] , или, что то же самое, *((int *)x + 2 * 7 + 3) . Во втором случае сперва извлекает 2-й элемент в массиве y, а затем 3-й элемент в полученном массиве.

В первом случае, когда мы делаем x + 2 , мы сдвигаемся сразу на 2 * sizeof (int [7]) , т. е. на 2 * 7 * sizeof (int) . Во втором случае, y + 2 — это сдвиг на 2 * sizeof (int *) .

В первом случае (void *)x и (void *)*x (и (void *)&x !) — это один и тот же указатель, во втором — это не так.

Adblock
detector