Как найти точку касания параболы и прямой

Здравствуйте! Продолжаем рассматривать задачи входящие в состав экзамена по математике. Задания, которые мы рассмотрим ниже, по-большому счёту, никаких глубоких знаний теории не требуют. Для их решения необходимо понимание геометрического смысла производной , умение решать квадратное уравнение и немного логики.

Суть заданий следующая: дана парабола вида у = ах 2 +bх+c и касательная к этой параболе у=kх b. Один из коэффициентов (a, b или c) неизвестен и его необходимо найти.

Как решать такие задачи? Что необходимо вспомнить?

1. Если даны уравнения двух функций, то точка (точки) пересечения их графиков находится путём решения системы этих уравнений. Пара (х;у) являющаяся решением системы есть точка пересечения графиков (или пары, если точек пересечения больше).

2. Если к графику функции проведена касательная, то производная этой функции в точке касания равна угловому коэффициенту этой касательной (см. ссылку выше).

Рассмотрим задачи (показаны два способа решения):

Прямая у=х+7 является касательной к графику функции ах 2 –15х+15. Найдите a.

Прямая и график данной функции имеют одну общую точку, это значит, что данные уравнения можно внести для решения в одну систему, но этих уравнений будет недостаточно для решения (кроме неизвестных х и у имеется ещё параметр а).

Известно, что производная функции в данной точке равна угловому коэффициенту касательной у = kх + b (где k это угловой коэффициент), то есть f′(xo) = k. Это третье уравнение, запишем систему:

Подставим из второго уравнения в первое:

Найдём а, подставим х = 1 в ах 2 – 15х + 15 = х + 7 или в 2ах – 15 = 1

По смыслу задачи параметр a ≠ 0, график заданной функции — парабола. Прямая с параболой имеет единственную общую точку, так как сказано, что эта прямая является касательной. Поэтому необходимо и достаточно, чтобы уравнение ах 2 – 15х + 15 = х + 7 имело единственно решение:

Квадратное уравнение будет иметь единственное решение тогда, когда дискриминант будет равен нулю:

Прямая у=3х+1 является касательной к графику функции ах 2 +2х+3. Найдите a.

Прямая у=5х–8 является касательной к графику функции 6х 2 + bх + 16

Найдите b, учитывая, что абсцисса точки касания больше 0.

Прямая и парабола пересекаются в одной точке, поэтому оба уравнения можно внести в систему, но она не решаема, так как имеем три неизвестных:

Известно, что производная функции в данной точке равна угловому коэффициенту касательной у = kх + b (где k это угловой коэффициент), то есть f′(x o ) = k. Это третье уравнение, запишем систему:

Кратко можно сказать так:

Условия касания графика функции f (x) = k и прямой у = kх + b задаётся системой требований:

По условию, абсцисса точки касания положительна, значит х = 2.

График заданной функции — парабола. Прямая с параболой имеет единственную общую точку, так как сказано, что эта прямая является касательной. Поэтому необходимо и достаточно, чтобы уравнение

имело единственно решение. Преобразуем:

Квадратное уравнение будет иметь единственное решение тогда, когда дискриминант будет равен нулю:

Теперь определим, при каком значении b абсцисса точки касания будет больше нуля. Можно подставить поочерёдно полученные значения в систему:

Далее решить её и сдать вывод. Верным решением будет то значение b, при котором получим положительную абсциссу.

Но мы сразу подставим их (поочерёдно) в 28х 2 + (b – 5) + 24 = 0.

Таким образом, b = – 19 (при этом значении абсцисса точки касания положительна).

Прямая у = –5х+8 является касательной к графику функции 28х 2 + bх + 15.

Найдите b, учитывая, что абсцисса точки касания больше 0.

Прямая у=–6х–2 является касательной к графику ф-ии 18х 2 +6х+с. Найдите c.

Условия касания графика функции у = f (x) и прямой у = kx + b задаётся системой требований:

Читайте также:  Как подключить автомобильную камеру к компьютеру

График заданной функции — парабола. Прямая с параболой имеет единственную общую точку, так как сказано, что эта прямая является касательной. Поэтому необходимо и достаточно, чтобы уравнение

имело единственное решение, преобразуем:

Квадратное уравнение будет иметь единственное решение тогда, когда дискриминант будет равен нулю, значит:

Прямая у=3х+4 является касательной к графику функции 3х 2 –3х+с. Найдите c.

Как видим, понимание способа нахождения точки пересечения графиков функций, заключающееся в решении системы, пригодилось при решении указанных задач (на ЕГЭ могут быть и другие). Но какие бы они не были, если чётко уясните геометрический смысл производной, проблем с подобными у вас не будет.

В данной рубрике продолжим рассматривать задачи, не пропустите!

Имеется круглая мишень радиуса R. На ней отмечены две окружности, радиусы которых равны 1/3 и 2/3 от радиуса мишени. Какова вероятность того, что кинутый в мишень дротик попадёт в закрашенную часть мишени? Результат округлите до тысячных.

*Учесть, что дротик мимо мишени попасть не может.

Тот учащийся, который первый напишет верный ответ, получит поощрительный приз в размере 150 рублей 😉

Надеюсь материал был вам полезен. Успехов Вам!

Наука: Математика

Секция: Геометрия

  • Условия публикаций
  • Все статьи конференции

КАСАТЕЛЬНЫЕ К ПАРАБОЛЕ

Паршева Валентина Васильевна

научный руководитель, заслуженный учитель РФ, учитель математики, школа № 24, г. Северодвинск

150%;background:">
Понятие касательной — одно из важнейших в математическом анализе. «Изучение прямых, касательных к кривым линиям, во многом определили пути развития математики» [2, с. 229]. Но касательную можно провести к различным кривым, в том и числе и к параболе, интерес к которой проявляли древние математики, такие как Апполоний Пергский, Архимед, Папп, Исидор Милетский. Интерес к касательным не ослабевал и у математиков последующих поколений. Исследования, связанные с построением касательных с помощью аналитических методов, проводили Р. Декарт, Г.В. Лейбниц, И. Ньютон.

150%;background:">
С помощью циркуля и линейки нетрудно построить касательную к окружности в данной ее точке. В Древней Греции умели строить с помощью циркуля и линейки касательные ко всем коническим сечениям: эллипсам, гиперболам и параболам, что свидетельствует о высоком уровне развития геометрии в то время.

150%;background:">
Актуальность работы в том, что понятия касательной к параболе, ее уравнение изучается только в 11 классе, и ее свойства не рассматриваются. В то же время исследование вопроса о касательной к параболе расширяет знания о параболе и круг решаемых задач. Одновременно актуальной является идея применения ИГС GeoGebra для проведения компьютерного моделирования исследуемого вопроса.

150%">
Проблемный вопрос: Понятие касательной к кривым вводится в школьном курсе математики только в 11 классе с помощью производной функции. Понятие производной функции возникло на много позже (XVII век) понятий параболы и касательной к ней. Можно ли без понятия производной функции дать определение параболы, сделать вывод ее уравнения и полученные знания применить для построения касательной к параболе?

150%;background:">
Цель исследования: применить имеющиеся знания о касательной для исследования новых свойств функции y=x 2 и попытаться использовать эти свойства для построения касательных к параболе y=x 2 без вычисления производной.

line-height:150%;background:">
1.Установить геометрическое место точек, являющихся точками пересечения взаимно-перпендикулярных касательных к параболе у=ах 2 .

line-height:150%;background:">
2.Установить, что касательная к параболе, проходящая через точку А параболы, является прямой, содержащей биссектрису угла, образованного лучом AF, где А — фокус параболы, и перпендикуляром, опущенном из точки А на директрису параболы.

Читайте также:  Как вывести видео на проектор с ноутбука

line-height:150%;background:">
3.Установить, что точки, симметричные фокусу параболы относительно всевозможных ее касательных, расположены на директрисе параболы.

line-height:150%;background:">
4.Установить, что касательные в концах фокальной хорды параболы пересекаются на директрисе параболы.

line-height:150%;background:">
5.На основании установленных свойств касательной к параболе выявить способы построения касательной.

line-height:150%">
·Анализ школьных учебников математики, математической, справочной литературы, литературы по истории математики.

line-height:150%">
·Компьютерное моделирование математических объектов с помощью ИГС GeoGebra (компьютерный эксперимент).

line-height:150%">
·Анализ полученных с помощью компьютерного эксперимента данных.

line-height:150%">
·Обобщение найденных с помощью компьютерного эксперимента закономерностей.

line-height:150%;background:">
·Аналитические рассуждения.

150%">
Объект исследования: парабола

150%">
Предмет исследования: касательные к параболе.

150%">
Гипотеза исследования Видимо, касательная к параболе, как любой геометрический объект, имеет свои свойства, которые расширят наши знания о параболе.

150%;background:">
В учебной литературе даются такие определения касательной к параболе:

150%;background:">
Определение 1. Прямая, имеющая с параболой только одну общую точку и не параллельная ее оси, называется касательной к параболе.

150%;background:">
В математическом анализе касательная к кривой в точке М определяется как предельное положение секущей МN при приближении точки N по кривой к точке М.

150%;background:">
Определение 2. Касательной к кривой в данной точке МО называется предельное положение секущей ММ1 при условии, что точка М1 стремится к точке М по данной кривой [1, с. 21].

Вывод уравнения касательной к параболе у = ах 2 в точке М; ах 2 )

150%;background:">
•Точки М; ах 2 ) и М11; ах1 2 ) принадлежат параболе у=ах2. Уравнение секущей М0М1 имеет вид:

Пусть точка М1 стремится к точке М. Тогда х1 стремится к х и в пределе уравнение секущей переходит в уравнение касательной в точке М; ах 2 )

150%;background:">
Касательная пересекает ось абсцисс в точке А (х/2; 0), что следует из уравнения касательной при у=0. Этот факт дает возможность построить касательную к параболе в данной точке М с помощью циркуля и линейки. Для этого нужно провести перпендикуляр МН из данной точки М к оси абсцисс, а затем построить середину отрезка ОН. Это точка А. Проведем прямую через точки А и М.

line-height:150%;background:">
• Прямая АМО является касательной к параболе в данной точке М0.

Построение касательной в ИГС GeoGebra

Алгоритм построения с помощь. ИГС аналогичен, только выполняется с помощью инструментов программы:

line-height:150%;background:">
• перпендикулярная прямая;

line-height:150%;background:">
• середина или центр;

line-height:150%;background:">
• прямая по двум точка.

150%;background:">
Задача. К параболе y = x 2 составить уравнения взаимно-перпендикулярных касательных. Найти точку их пересечения.

150%;background:">
Решение. Уравнение касательной к параболе y = ax 2 в точке с абсциссой х. Угловой коэффициент этой касательной k = 2ax. Уравнение касательной к параболе y = ax 2 в точке с абсциссой х1. Угловой коэффициент этой касательной k1 = 2ax1.

150%;background:">
Найдем соотношение между абсциссами х и х1. k·k1=-1 — условие перпендикулярности двух прямых. Тогда: 2ax∙2ax1 = -1; 4a 2 xx1 = -1;

150%;background:">
Искомое уравнение

background:">

background:">

150%;background:">
Составим уравнения взаимно-перпендикулярных касательных к параболе у = х 2 в различных точках, найдем их точки пересечения и сделаем сравнение

150%;background:">
Выполнив аналогичные рассуждения для параболы у = ах 2 и сравним координаты точек пересечения взаимно-перпендикулярных касательных к параболе у = ах 2 можно сделать вывод: абсциссы этих точек разные, а ординаты равны -1/4а, т. е. все такие точки находятся на прямой у = -1/4а, т. е. взаимно-перпендикулярные касательные пересекаются на директрисе параболы.

Читайте также:  Как переустановить виндовс на ноутбуке dell

150%;background:">
Возникает вопрос: всегда ли к параболе можно провести две взаимно-перпендикулярных касательных. Ответ очевиден — исключением является вершина параболы.

150%;background:">
Теорема параболы. Пусть A — точка на параболе с фокусом F, директриса d, АD — перпендикуляр, опущенный на директрису. Тогда касательной к параболе, проходящей через точку A, будет прямая, содержащая биссектрису угла FAD.

150%;background:">
Доказательство. Пусть касательная t в точке M параболы пересекает ее директрису в точке Q и пусть P — основание перпендикуляра, опущенного из точки M на директрису.

150%;background:">
В четырехугольнике MFQP два противолежащих угла — прямые и стороны MP и MF равны.

150%;background:">
Следовательно, ΔPMQ = ΔQMF и касательная t является биссектрисой угла, образованного фокальным радиусом и прямой, проходящей через данную точку параллельно оси x.

150%;background:">
Если MP — перпендикуляр, опущенный из точки M параболы на директрису, то биссектриса угла FMP есть касательная к параболе в точке M.

150%;background:">
Вывод. Отсюда, далее, следует, что основания перпендикуляров, опущенных из фокуса параболы на ее касательные, принадлежат касательной к параболе в ее вершине.

150%;background:">
На основании свойств касательной можно выполнить построение касательных к параболе, проведенных из точки P. Пусть парабола задана фокусом F и директрисой d. Используя циркуль и линейку, построим касательную к параболе, проходящую через данную точку C. С центром в точке C и радиусом CF проведем окружность и найдем ее точки пересечения с директрисой d. Если расстояние от точки C до фокуса больше, чем расстояние до директрисы, то таких точек две. Обозначим их D1 и D2. Проведем биссектрисы углов FCD1 и FCD2соответственно. Прямые a1 и a2, содержащие эти биссектрисы являются серединными перпендикулярами к отрезкам FD1 и FD2 и, значит, будут искомыми касательными к параболе. Для построения точек касания через точки D1 и D2 проведем прямые, перпендикулярные директрисе и найдем их точки пересечения

150%;background:">
A1 и A2 с прямыми a1 и a2. Они и будут искомыми точками касания. Через точку C проходят две касательные к параболе.

150%;background:">
Построение касательных, проходящих через точку С выполнено в ИГС GeoGebra с помощью инструментов: Окружность по центру и радиусу, Отрезок по двум точкам, Пересечение двух объектов, Серединный перпендикуляр.

150%;background:">
В результате выполнения работы установлено, что:

line-height:150%;background:">
•геометрическое место точек, являющихся точками пересечения взаимно-перпендикулярных касательных к параболе у = ах 2 .

line-height:150%;background:">
•касательная к параболе, проходящая через точку А параболы, является прямой, содержащей биссектрису угла, образованного лучом AF, где А — фокус параболы, и перпендикуляром, опущенном из точки А на директрису параболы.

line-height:150%;background:">
•точки, симметричные фокусу параболы относительно всевозможных ее касательных, расположены на директрисе параболы.

line-height:150%;background:">
•На основании установленных свойств касательной к параболе выявлены способы построения касательной

150%;background:">
При выполнении работы были продемонстрированы возможности применения ИГС GeoGebra, что явилось новизной в исследовании поставленной проблемы.

-1.0cm;line-height:150%;background:">
1.Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. Геометрия. Дополнительные главы к учебнику 9 класса — М.: Вита — Пресс, 2003. — 176 с.;

-1.0cm;line-height:150%;background:">
2.Энциклопедический словарь юного математика. Сост. Савин А.П. — М.: Педагогика, 1985. — 352 с.;

Главная Шутки Форум
План занятий

Парабола. Фокус. Директриса. У равнение параболы.

Уравнение касательной к параболе.

Условие касания прямой и параболы.

Параболой ( рис.1 ) называется геометрическое место точек, равноудалённых от заданной точки F , называемой фокусом параболы, и данной прямой, не проходящей через эту точку и называемой директрисой параболы.

Уравнение параболы ( рис.1 ) :

Здесь ось ОХ является осью симметрии параболы.

Пусть Р ( х 1 , у 1 ) – точка параболы, тогда уравнение касательной к параболе в данной точке имеет вид:

Adblock
detector