Как найти мат ожидание и дисперсию

Назначение сервиса . С помощью сервиса в онлайн режиме вычисляются математическое ожидание, дисперсия и среднеквадратическое отклонение (см. пример). Кроме этого строится график функции распределения F(X) .

  • Решение онлайн
  • Видеоинструкция

Свойства математического ожидания случайной величины

  1. Математическое ожидание постоянной величины равно ей самой: M[C]=C , C – постоянная;
  2. M[C•X]=C•M[X]
  3. Математическое ожидание суммы случайных величин равно сумме их математических ожиданий: M[X+Y]=M[X]+M[Y]
  4. Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий: M[X•Y]=M[X]•M[Y] , если X и Y независимы.

Свойства дисперсии

  1. Дисперсия постоянной величины равна нулю: D(c)=0.
  2. Постоянный множитель можно вынести из-под знака дисперсии, возведя его в квадрат: D(k*X)= k 2 D(X).
  3. Если случайные величины X и Y независимы, то дисперсия суммы равна сумме дисперсий: D(X+Y)=D(X)+D(Y).
  4. Если случайные величины X и Y зависимы: D(X+Y)=DX+DY+2(X-M[X])(Y-M[Y])
  5. Для дисперсии справедлива вычислительная формула:
    D(X)=M(X 2 )-(M(X)) 2

Пример . Известны математические ожидания и дисперсии двух независимых случайных величин X и Y : M(x)=8 , M(Y)=7 , D(X)=9 , D(Y)=6 . Найти математическое ожидание и дисперсию случайное величины Z=9X-8Y+7 .
Решение. Исходя из свойств математического ожидания: M(Z) = M(9X-8Y+7) = 9*M(X) — 8*M(Y) + M(7) = 9*8 — 8*7 + 7 = 23.
Исходя из свойств дисперсии: D(Z) = D(9X-8Y+7) = D(9X) — D(8Y) + D(7) = 9^2D(X) — 8^2D(Y) + 0 = 81*9 — 64*6 = 345

Алгоритм вычисления математического ожидания

Пример №1 .

xi 1 3 4 7 9
pi 0.1 0.2 0.1 0.3 0.3

Математическое ожидание находим по формуле m = ∑xipi.
Математическое ожидание M[X].
M[x] = 1*0.1 + 3*0.2 + 4*0.1 + 7*0.3 + 9*0.3 = 5.9
Дисперсию находим по формуле d = ∑x 2 ipi — M[x] 2 .
Дисперсия D[X].
D[X] = 1 2 *0.1 + 3 2 *0.2 + 4 2 *0.1 + 7 2 *0.3 + 9 2 *0.3 — 5.9 2 = 7.69
Среднее квадратическое отклонение σ(x).
σ = sqrt(D[X]) = sqrt(7.69) = 2.78

Пример №2 . Дискретная случайная величина имеет следующий ряд распределения:

Х -10 -5 5 10
р а 0,32 2a 0,41 0,03

Найти величину a , математическое ожидание и среднее квадратическое отклонение этой случайной величины.

Решение. Величину a находим из соотношения: Σpi = 1
Σpi = a + 0,32 + 2 a + 0,41 + 0,03 = 0,76 + 3 a = 1
0.76 + 3 a = 1 или 0.24=3 a , откуда a = 0.08

Пример №3 . Определить закон распределения дискретной случайной величины, если известна её дисперсия, причем х1 d(x) :
d(x) = x1 2 p1+x2 2 p2+x3 2 p3+x4 2 p4-m(x) 2
где матожидание m(x)=x1p1+x2p2+x3p3+x4p4
Для наших данных
m(x)=6*0,3+9*0,3+x3*0,1+15*0,3=9+0.1x3
12,96 = 6 2 0,3+9 2 0,3+x3 2 0,1+15 2 0,3-(9+0.1x3) 2
или -9/100 (x 2 -20x+96)=0
Соответственно надо найти корни уравнения, причем их будет два.
x3=8, x3 =12
Выбираем тот, который удовлетворяет условию х1

Читайте также:  Как переслать деньги с мегафона на мегафон

Математическое ожидание случайной величины $X$ (обозначается $M(X)$ или реже $E(X)$) характеризует среднее значение случайной величины (дискретной или непрерывной). Мат. ожидание — это первый начальный момент заданной СВ.

Математическое ожидание относят к так называемым характеристикам положения распределения (к которым также принадлежат мода и медиана). Эта характеристика описывает некое усредненное положение случайной величины на числовой оси. Скажем, если матожидание случайной величины — срока службы лампы, равно 100 часов, то считается, что значения срока службы сосредоточены (с обеих сторон) от этого значения (с тем или иным разбросом, о котором уже говорит дисперсия).

Формула среднего случайной величины

Математическое ожидание дискретной случайной величины Х вычисляется как сумма произведений значений $x_i$ , которые принимает СВ Х, на соответствующие вероятности $p_i$: $$ M(X)=sum_^. $$ Для непрерывной случайной величины (заданной плотностью вероятностей $f(x)$), формула вычисления математического ожидания Х выглядит следующим образом: $$ M(X)=int_<-infty>^ <+infty>f(x) cdot x dx. $$

Пример нахождения математического ожидания

Рассмотрим простые примеры, показывающие как найти M(X) по формулам, введеным выше.

Пример 1. Вычислить математическое ожидание дискретной случайной величины Х, заданной рядом: $$ x_i quad -1 quad 2 quad 5 quad 10 quad 20 \ p_i quad 0.1 quad 0.2 quad 0.3 quad 0.3 quad 0.1 $$

Используем формулу для м.о. дискретной случайной величины: $$ M(X)=sum_^. $$ Получаем: $$ M(X)=sum_^ =-1cdot 0.1 + 2 cdot 0.2 +5cdot 0.3 +10cdot 0.3+20cdot 0.1=6.8. $$ Вот в этом примере 2 описано также нахождение дисперсии Х.

Пример 2. Найти математическое ожидание для величины Х, распределенной непрерывно с плотностью $f(x)=12(x^2-x^3)$ при $x in(0,1)$ и $f(x)=0$ в остальных точках.

Используем для нахождения мат. ожидания формулу: $$ M(X)=int_<-infty>^ <+infty>f(x) cdot x dx. $$ Подставляем из условия плотность вероятности и вычисляем значение интеграла: $$ M(X)=int_<-infty>^ <+infty>f(x) cdot x dx = int_<0>^ <1>12(x^2-x^3) cdot x dx = int_<0>^ <1>12(x^3-x^4) dx = \ =left.(3x^4-frac<12><5>x^5)
ight|_0^1=3-frac<12> <5>= frac<3><5>=0.6. $$

Вычисление математического ожидания онлайн

Как найти математическое ожидание онлайн для произвольной дискретной случайной величины? Используйте калькулятор ниже.

  • Введите число значений случайной величины К.
  • Появится форма ввода для значений $x_i$ и соответствующих вероятностей $p_i$ (десятичные дроби вводятся с разделителем точкой, например: -10.3 или 0.5). Введите нужные значения (проверьте, что сумма вероятностей равна 1, то есть закон распределения корректный).
  • Нажмите на кнопку "Вычислить".
  • Калькулятор покажет вычисленное математическое ожидание $M(X)$.
Читайте также:  Как напечатать с другой стороны листа

Видео. Полезные ссылки

Видеоролики: что такое среднее (математическое ожидание)

Если вам нужно более подробное объяснение того, что такое мат.ожидание, как она вычисляется и какими свойствами обладает, рекомендую два видео (для дискретной и непрерывной случайной величины соответственно).

Полезные ссылки

Что еще может пригодиться? Например, для изучения основ теории вероятностей — онлайн учебник по терверу. Для закрепления материала — еще примеры решений по теории вероятностей.

А если у вас есть задачи, которые надо срочно сделать, а времени нет? Можете поискать готовые решения в решебнике или заказать в МатБюро:

Пусть мы измеряем случайную величину раз, например, десять раз измеряем скорость ветра и хотим найти среднее значение. Как связано среднее значение с функцией распределения?

Будем кидать игральный кубик большое количество раз. Количество очков, которое выпадет на кубике при каждом броске, является случайной величиной и может принимать любые натуральные значения от 1 до 6. Среднее арифметическое выпавших очков, подсчитанных за все броски кубика, тоже является случайной величиной, однако при больших оно стремится ко вполне конкретному числу – математическому ожиданию . В данном случае

Каким образом получилась эта величина? Пусть в испытаниях раз выпало 1 очко, раз – 2 очка и так далее. Тогда При количество исходов, в которых выпало одно очко, Аналогично, Отсюда

Предположим теперь, что мы знаем закон распределения случайной величины , то есть знаем, что случайная величина может принимать значения с вероятностями

Математическое ожидание случайной величины равно

Математическое ожидание случайной величины часто обозначается как . Записи и эквивалентны.

Найти математическое ожидание числа очков, которые выбьет первый стрелок в предыдущем примере.

Закон распределения рассматриваемой случайной величины может быть задан следующей таблицей:

Другими словами, вероятность 1 того, что случайная величина окажется меньшей 1/2, и вероятность 2 того, что случайная величина окажется большей 1/2, одинаковы и равны 1/2. Медиана определяется однозначно не для всех распределений.

Читайте также:  Как поменять шрифт в виндовс 10

Вернёмся к случайной величине , которая может принимать значения с вероятностями

Значит,

Математическое ожидание не всегда является разумной оценкой какой-нибудь случайной величины. Так, для оценки средней заработной платы разумнее использовать понятие медианы, то есть такой величины, что количество людей, получающих меньшую, чем медиана, зарплату и большую, совпадают.

Медианой случайной величины называют число 1/2 такое, что

Дисперсией случайной величины называется среднее значение квадрата отклонения случайной величины от её математического ожидания:

Используя вероятности того, что величина принимает значения , эту формулу можно переписать следующим образом:


Среднеквадратическим отклонением случайной величины называется корень квадратный из дисперсии этой величины:

В условиях предыдущего примера вычислить дисперсию и среднеквадратическое отклонение случайной величины .

Имеем: .

Найти распределение вероятности числа очков, выпавших на кубике с первого броска, медиану, математическое ожидание, дисперсию и среднеквадратичное отклонение.

Выпадение любой грани равновероятно, так что распределение будет выглядеть так:

Среднеквадратичное отклонение Видно, что отклонение величины от среднего значения очень велико.

Свойства математического ожидания

  • Математическое ожидание суммы независимых случайных величин равно сумме их математических ожиданий:
  • Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий:

Найти математическое ожидание суммы и произведения очков, выпавшей на двух кубиках.

В примере 3 мы нашли, что для одного кубика Значит, для двух кубиков

Свойства дисперсии

  • Дисперсия суммы независимых случайных величин равно сумме дисперсий:

Найти математическое ожидание и дисперсию суммы очков, выпавших при бросании кубика раз.

Случайный процесс можно представить как сумму единичных бросков. Для единичного броска

Пусть за бросков на кубике выпало очков. Тогда


Если – среднее количество очков, выпавших на кубике за бросков: то:


Этот результат верен не только для бросков кубика. Он во многих случаях определяет точность измерения математического ожидания опытным путем. Видно, что при увеличении количества измерений разброс значений вокруг среднего, то есть среднеквадратичное отклонение, уменьшается пропорционально

Дисперсия случайной величины связана с математическим ожиданием квадрата этой случайной величины следующим соотношением:

Действительно,

Найдём математические ожидания обеих частей этого равенства. По определению, Математическое же ожидание правой части равенства по свойству математических ожиданий равно

Adblock
detector