Как найти линию уровня

Определение. Предел отношения , если он существует, называется Производной функции Z=F(M) в точке M(X; Y) по направлению вектора L .

Обозначение.

Если функция F(M) дифференцируема в точке М(х; у), то в точке М(х; у) существует производная по любому направлению L, исходящему из М; вычисляется она по следующей формуле:

(8)

Где Cos И Cos — направляющие косинусы вектора L.

Пример 46. Вычислить производную функции Z=X2+Y2X в точке М(1; 2) по направлению вектора ММ1, где М1 – точка с координатами (3; 0).

Решение. Найдем единичный вектор L, имеющий данное направление:

Откуда Cos=; Cos=-.

Вычислим частные производные функции в точке М(1; 2):

По формуле (8) получим

Пример 47. Найти производную функции U = Xy2Z3 в точке М(3; 2; 1) В направлении вектора MN, где N(5; 4; 2).

Решение. Найдем вектор и его направляющие косинусы:

Вычислим значения частных производных в точке М:

Следовательно,

Определение. Градиентом Функции Z=F(M) в точке М(х; у) называется вектор, координаты которого равны соответствующим частным производным и, взятым в точке М(х; у).

Обозначение.

Решение. Находим частные производные: и их значения в точке М(2; -1):

Пример 49. Найти величину и направление градиента функции в точке

Решение. Найдем частные производные и вычислим их значения в точке М:

Аналогично определяется производная по направлению для функции трех переменных U=F(X, Y, Z), выводятся формулы

Вводится понятие градиента

Подчеркнем, что Основные свойства градиента функции важнее для анализа экономических оптимизационных задач: в направлении градиента функция возрастает. В экономических задачах находят применение следующие свойства градиента:

1) Пусть задана функция Z=F(X, Y), имеющая частные производные в области определения. Рассмотрим некоторую точку М0(х0, у0) из области определения. Значение функции в этой точке пусть равно F(X, Y). Рассмотрим график функции. Через точку (X, Y, F(X, Y)) трехмерного пространства проведем плоскость, касательную к поверхности графика функции. Тогда градиент функции, вычисленный в точке (х0, у0), рассматриваемый геометрически как вектор, приложенный в точке (X, Y, F(X, Y)), будет перпендикулярен касательной плоскости. Геометрическая иллюстрация приведена на рис. 34.

2) Градиент функции F(X, Y) в точке М0(х0, у0) указывает направление наиболее быстрого возрастания функции в точке М0. Кроме того, любое направление, составляющее с градиентом острый угол, является направлением роста функции в точке М0. Другими словами, малое движение из точки (х0, у0) по направлению градиента функции в этой точке ведет к росту функции, причем в наибольшей степени.

Рассмотрим вектор, противоположный градиенту. Он называется Антиградиентом. Координаты этого вектора равны:

Антиградиент функции F(X, Y) в точке М0(х0, у0) указывает направление наиболее быстрого убывания функции в точке М0. Любое направление, образующее острый угол с антиградиентом, является направлением убывания функции в этой точке.

3) При исследовании функции часто возникает необходимость нахождения таких пар (х, у) из области определения функции, при которых функция принимает одинаковые значения. Рассмотрим множество точек (X, Y) из области определения функции F(X, Y), таких, что F(X, Y)=Const, где запись Const означает, что значение функции зафиксировано и равно некоторому числу из области значений функции.

Линии уровня геометрически изображаются на плоскости изменения независимых переменных в виде кривых линий. Получение линий уровня можно представить себе следующим образом. Рассмотрим множество С, которое состоит из точек трехмерного пространства с координатами (X, Y, F(X, Y)=Const), которые, с одной стороны, принадлежат графику функции Z=F(X, Y), с другой — лежат в плоскости, параллельной координатной плоскости ХОУ, и отстоящей от неё на величину, равную заданной константе. Тогда для построения линии уровня достаточно поверхность графика функции пересечь плоскостью Z=Const и линию пересечения спроектировать на плоскость ХОУ. Проведенное рассуждение является обоснованием возможности непосредственно строить линии уровня на плоскости ХОУ.

Читайте также:  Как отказаться от кабельного телевидения ростелеком

Определение. Множество линий уровня называют Картой линий уровня.

Хорошо известны примеры линий уровня – уровни одинаковых высот на топографической карте и линии одинакового барометрического давления на карте погоды.


Определение. Направление, вдоль которого скорость увеличения функции максимальна, называется «предпочтительным» направлением, или Направлением наискорейшего роста.

«Предпочтительное» направление задается вектором-градиентом функции. На рис. 35 изображены максимум, минимум и седловая точка в задаче оптимизации функции двух переменных при отсутствии ограничений. В нижней части рисунка изображены линии уровня и направления наискорейшего роста.

Решение. Уравнение семейства линий уровня имеет вид X2+Y2=C (C>0). Придавая С различные действительные значения, получим концентрические окружности с центром в начале координат.

Построение линий уровня. Их анализ находит широкое применение в экономических задачах микро — и макроуровня, теории равновесия и эффективных решений. Изокосты, изокванты, кривые безразличия – это все линии уровня, построенные для разных экономических функций.

Пример 51. Рассмотрим следующую экономическую ситуацию. Пусть производство продукции описывается Функцией Кобба-Дугласа F(X, Y)=10х1/3у2/3, где Х – количество труда, У – количество капитала. На приобретение ресурсов выделено 30 у. ед., цена труда составляет 5 у. ед., капитала – 10 у. ед. Зададимся вопросом: какой наибольший выпуск можно получить в данных условиях? Здесь под «данными условиями» имеются в виду заданные технологии, цены на ресурсы, вид производственной функции. Как уже отмечалось, функция Кобба-Дугласа является монотонно возрастающей по каждой переменной, т. е. увеличение каждого вида ресурса ведет к росту выпуска. В данных условиях ясно, что увеличивать приобретение ресурсов можно до тех пор, пока хватает денег. Наборы ресурсов, стоимость которых составляет 30 у. ед., удовлетворяют условию:

Т. е. определяют линию уровня функции:

С другой стороны, с помощью линий уровня Функции Кобба-Дугласа (рис. 36) можно показать возрастание функции: в любой точке линии уровня направление градиента – это направление наибольшего возрастания, а для построения градиента в точке достаточно провести касательную к линии уровня в этой точке, построить перпендикуляр к касательной и указать направление градиента. Из рис. 36 видно, что движение линии уровня функции Кобба-Дугласа вдоль градиента следует производить до тех пор, пока она не станет касательной к линии уровня 5х + 10у = 30. Таким образом, с помощью понятий линии уровня, градиента, свойств градиента можно выработать подходы к наилучшему использованию ресурсов с точки зрения увеличения объемов выпускаемой продукции.

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

Пусть: z — переменная величина с областью изменения R; R- числовая прямая; D — область на координатной плоскости R2.

Любое отображение D->R называют функцией двух переменных с областью определения D и пишут z = f(x;y).

Читайте также:  Как повысить рейтинг в танках

Если каждой паре (х; у) двух независимых перемен­ных из области D по некоторому правилу ста­вится в соответствие одно определенное значение z из R, то переменную величину z называют функцией двух не­зависимых переменных х и у с областью определения D и пишут

Аналогичным образом определяются функции многих переменных

П р и м е р 1. Найти и изобразить область определения функции

Область определения – есть плоскость хОу за исключением точек, лежащих на параболе у = х2, см. рисунок.

П р и м е р 2. Найти и изобразить область определения функции

Область определения – есть часть плоско­сти, лежащая внутри круга радиуса г = 3 , с центром в начале координат, см. рисунок.

П р и м е р 3. Найти и изобразить область определения функции

Область определения – есть часть плоско­сти, в которой абсцисса и ордината ка­ждой точки имеют одинаковые знаки, т. е. это часть плоскости, лежащая в пер­вом и третьем координатных углах, см. рисунок.

К числу функций нескольких переменных относятся производственные функции.

Производственными функциями называют функ­ции, представляющие зависимости величин объемов вы­пускаемой продукции от переменных величин затрат ре­сурсов.

Производственные функции применяются не только в микроэкономических, но и в макроэкономических рас­четах.

Простейшая производственная функция — функция зависимости объема произведенной работы V от объемов трудовых ресурсов R и вложенного в производство капи­тала К

2.ГЕОМЕТРИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ ФУНКЦИИ ДВУХ

2.1.График функции двух переменных

Рассмотрим в пространстве прямоугольную систему координат и область D на плоскости хОу. В каждой точке М(х;у) из этой области восстановим перпендикуляр к плос­кости хОу и отложим на нем значение z = f(x; у). Геомет­рическое место полученных точек

является пространственным графиком, функции двух переменных.

Это некоторая поверхность.

Равенство z = f(x; у) называется уравнением этой по­верхности.

Функция двух переменных имеет наглядную геомет­рическую интерпретацию. Для функции числа перемен­ных n > 2 аналогом поверхности является гиперповерх­ность (n + 1) — мерного пространства, не имеющая геомет­рической интерпретации.

Линией уровня функции двух переменных z = f(x; у) называется линия f(x; у) = С (С = const) на плоскости хОу, в каждой точке которой функция сохраняет постоянное значение С.

Линия уровня представляет собой сечение поверхности графика функции двух переменных z = f(x; у) плоскостью z = С.

Поверхностью уровня функции трех переменных

u = f(x; у; z) называется поверхность в R3 (трехмерном про­странстве), в каждой точке которой функция сохраняет постоянное значение f(x;y;z) = C (С = const).

П р и м е р. Найти и построить линии уровня функции

Решение.

Линии уровня z = С данной функции имеют уравнения

Это окружности с центром в начале координат, радиусом R = C1/2 и уравнением

x2 + y2 = R2, см. рисунок.

Линии уровня позволяют представить рассматриваемую поверхность, дающую в сечении плоскостями z = C концентрические окружности.

При построении графика функции часто пользуются методом сечений.

П р и м е р. Построить график функции и найти .

Решение. Воспользуемся методом сечений.

– в плоскости – парабола.

– в плоскости –парабола.

– в плоскости – окружность.

Искомая поверхность – параболоид вращения.

Расстоянием между двумя произвольными точками и (евклидова) пространства называется число

Читайте также:  Как озвучивать видео в домашних условиях

Множество точек называется открытым кругом радиуса с центром в точке r.

Открытый круг радиуса ε с центром в точке A называется ε — окрестностью точки А.

Найти и изобразить графически область определения функции:

Построить линии уровня функций:

3. ПРЕДЕЛ ФУНКЦИИ ДВУХ ПЕРЕМЕННЫХ

Основные понятия математического анализа, введен­ные для функции одной переменной, распространяются и на функции нескольких переменных.

О п р е д е л е н и е:

Постоянное число А называется пределом функции двух переменных z = f(x;у) при х —> х0, у —> у0, если для лю­бого

ε >0 существует δ >0 такое, что |f(х; у) — А| 0 — постоянное число.

Постоянное число А называется пределом функции двух переменных f(x;y) = f(M) при стремлении точки М к точке М0, если для любого ε >0 можно найти такое число г >0, что как только расстояние |М0М| 0.

Предел отношения при Δs—>0 называется произ-

водной функции z = f(х; у) в точке (х; у) по направлению вектора и обозначается

Переходя к этому пределу, получим

(*)

Таким образом, зная част­ные производные функции

z = f(x; у) можно найти произ­водную этой функции по любому направлению, а каждая частная производная является частным случаем произ­водной по направлению.

П р и м е р. Найти производную функции

в точке М(1;0) в направлении, составляющем с Ох угол в 30°.

Следовательно, функция z = f(x;y) в данном направлении возрастает.

Градиентом функции z = f(x; у) называется вектор , координатами которого являются соответствующие частные производные данной функции

Связь между производной функции по направлению и градиентом этой функции осуществляется соотношени­ем

т. е. производная функции z = f(x;y) в данном направле­нии равна проекции градиента функции на направле­ние дифференцирования.

Градиент функции в каждой точке направлен по нормали к соответствующей линии уровня данной функ­ции.

Направление градиента функции в данной точке есть направление наибольшей скорости возрастания функции в этой точке.

При обработке данных в предметных областях, связанных с научной деятельностью, часто возникает необходимость в построении и визуализации функции двух независимых переменных. Типичным примером является необходимость визуального представления результатов решения двумерных дифференциальных уравнений в частных производных, получаемых в виде так называемых сеточных функций.

Предлагается простой класс для построения линий уровня (изолиний) функции: Z=F(X,Y) в виде линий на плоскости X-Y, удовлетворяющих уравнениям Z=const (где const — набор заданных значений).

Предполагается, что функция Z задана в виде массива z[J,K] на произвольной сетке с четырехугольными ячейками. Сетка задается двумя массивами x[J,K], y[J,K], где J и K размеры сетки.

Значения функции определены в углах четырехугольной ячейки. В каждой ячейке проверяется прохождение рассчитываемой линии уровня через ее грани и, при условии, что линия проходит через ячейку, вычисляются координаты пересечения линии уровня с гранями. Внутри ячейки линия проводится прямолинейным отрезком.

Исходный текст снабжен подробными комментариями.

Для демонстрации работы класса предлагается небольшое тестовое приложение WPF, которое строит линии уровня для функции вида: z = x^2 + y^2 на сетке 10 на 10.

И файл кода MainWindow.xaml.cs:

Результат работы тестового примера представлен на рисунке:

Adblock
detector